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Fuzzy Logics and Observables 

R a d k o  Mes iar  ~ 

Received December 28, 1992 

Systems of fuzzy subsets fulfilling quantum logic axioms with respect to fuzzy 
connectives are studied. An integral representation of a state on a fuzzy logic is 
shown. Fuzzy observables and their real-valued mean values are introduced 
in the obvious way. Using the relationship between fuzzy observables and 
fuzzy real-valued random variables, a fuzzy real-valued mean value of a fuzzy 
observable is introduced. The relationship between both types of mean values is 
studied and an example is presented. 

1. I N T R O D U C T I O N  

One of the most  impor tant  axiomatic models of  quan tum mechanics is 
the quan tum logic of Varadara jan  (1968). This is a a-lattice or a a-poset  
L with minimal and maximal element 0 and 1, respectively, and with a 
unary  operat ion _1_: L - +  L ( /  is called an or thocomplementa t ion)  so that: 

(i) ( a i ) : =  a for any a s  L (law of repeated negation). 
(ii) If a ~ b, a, b ~ L, then b I ~< a :  (order reversing). 

(iii) a v a •  (excluded middle law) and a A  a •  (law of 
contradict ion)  for any a ~ L. 

(iv) If  a ~< b, a, b ~ L, then there is an element c s L, c ~< a • such that  
b = a v c (orthomodt~lar law). 

(v) V a~ E L whenever {an} c L, an ~< am ~ if n r m (a-or thocomplete-  
ness condition). 

Two elements a and b are or thogonal  and we write a 3_b if a ~ b • We 
recall that  a quan tum logic is not  necessarily distributive or  a lattice. 

Recently, several fuzzy models of quan tum mechanics have appeared. 
A m o n g  these models, only Pykacz 's  fuzzy quan tum logic (Pykacz,  1991) 
[and  generalized fuzzy quan tum logic (Pykacz,  n.d.)] is a quan tum logic 
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in the sense of Varadarajan. But then all results for quantum logics can be 
rewritten for Pykacz's fuzzy quantum logics. Recall that Pykacz used the 
Giles (1979) fuzzy connectives of bold union and bold intersection for fuzzy 
sets. In a separate paper (Mesiar, n.d.-a) we have shown that his approach 
is the only possible one up to an isomorphism. For other fuzzy quantum 
models, some modifications in the quantum logic axioms are needed. Take, 
e.g., a fuzzy quantum space M of Rie~an (1988). Then axiom (iii) should 
be weakened to: 

(iii*) m ( a v a  •  for a n y a t M .  

Similarly, (iv) should be weakened to: 

(iv*) If a<~b, a, beM,  then there is an element c~M,  c<~a • such 
that re(b)= m(a v c). 

Here m is a state (fuzzy probability measure) on M. Moreover, this last 
model is a distributive one. A similar case is the distributive fuzzy quantum 
poser of Dvure~enskij and Rie6an (1991), which is based on the ideas of 
Pykacz (1987) [-recall that this model is based on the original Zadeh (1965) 
fuzzy connectives, i.e., [) = V and (~ = A, A • = 1 - A). 

Since Pykacz's (1991, n.d.) model of a fuzzy quantum logic is rather 
restrictive from the fuzzy set point of view, we propose another model of 
fuzzy logic based on Giles fuzzy connectives, where the join and the meet 
of two elements, respectively, correspond to their bold union and bold 
intersection, respectively. Consequently, a nonconsistency between the 
natural ordering of fuzzy sets and the join (meet) may occur. 

We define a fuzzy state of a fuzzy logic and we show its relationship 
to To-measures of Klement (1982). Starting from a simple fuzzy observ- 
able [corresponding to a simple fuzzy measurable function of Butnariu 
(1986)], we introduce a fuzzy observable, which corresponds to a fuzzy 
real-valued random variable of Klement (1985). Finally, we introduce two 
types of mean value for fuzzy observables--a real-valued one and a fuzzy 
real-valued one, and we study their relationship. 

2. FUZZY LOGIC 

Let f~ be a nonvoid set, called the universe. By a fuzzy subset A of 
we shall understand a real-valued function defined on ~ with values in the 
unit interval [0, 1], A : ~  [0, 1]. The number A(co)e [0, 1] means the 
degree of membershipness of element co to the fuzzy set A. The system of 
all fuzzy subsets of f~ will be denoted by ~(f~).  The natural ordering on 
the unit interval induces the ordering on Y(f~). We put A~<B iff 
A(co)~<B(co) for any co e ~ .  The fuzzy connectives of complementation, 
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union, and intersection are defined pointwise, i.e., A• 
(A w B)(co) = S(A(co), B(co)), and (A c~ B)(co) = T(A(co), B(co)), co ~ Q. Here 
e is an order-reversing involution on the unit interval ]-0, 1 ]. S and T form 
a e-dual pair of a continuous t-conorm and a t-norm, i.e., T(x, y ) =  
e(S(e(x), e(y))  for any x, y from [-0, 1 ]. For  more details about fuzzy con- 
nectives see, e.g., Dubois and Prade (1985). Recall that the original Zadeh 
fuzzy complementation is based on the involution e ( x ) =  1 -  x and hence 
A Z =  1 - A .  The Zadeh fuzzy union u is based on the t-conorm So(x, y ) =  
max(x, y) and hence A u B = A v B; similarly, for the Zadeh fuzzy inter- 
section n it is A n B = A /, B. In the case of the Giles fuzzy connectives, the 
bold union u is based on the t-conorm So~(x, y ) = i n ( x +  y, 1) and hence 
A u B =  min(A + B, 1). The bold intersection c~ is based on the t-norm 
To~(x, y) = max(x + y - 1, 0) and hence A ~ B = max(A + B- -  1, 0). Here  0 
and 1 are the minimal and maximal elements of Y( f l ) ,  respectively. 

Let g ( f l )  be equipped by the fuzzy connectives pointwise generated 
by c, S, and T. If we take the fuzzy complementation as an orthocom- 
plementation on ~( f~) ,  the fuzzy union as the join, and the fuzzy inter- 
section as the meet, then all axioms (i)-(v) are fulfilled if and only if these 
fuzzy connectives are isomorphic to the Zadeh fuzzy complementation and 
to the Giles bold union and bold intersection (Mesiar, n.d.-a). This justifies 
the following definition. 

Definition 1. Any nonempty system 50 c ~ ( f~ )  of fuzzy subsets of f~ 
closed under Zadeh fuzzy complementation and under countable Giles 
bold union will be called a fuzzy logic on ~.  The orthocomplementat ion on 
50 is the fuzzy complementation •  the join (meet) is the bold union u 
(bold intersection c~). 

Proposition 1. Let 5 ~ be a fuzzy logic on f~. Then 50 fulfills the 
axioms (i)-(v). 

Proof The duality of the Giles bold union and intersection ensures 
that 50 is closed under bold intersections, too. Since 50 is nonempty, there 
is a fuzzy subset A ~ 50. Then 0 = A n A ~ ~ 50 and 1 = 0 1 ~ 50. The validity 
of axioms (i)-(iii) and (v) is obvious. For  (iv), let A, B~50, A<~B. Then 
A • = 1 - A 6 50, and consequently C = A • c~ B --- max(1 - A + B - 1, 0) = 
B - A e 5 0 .  We have C~<A • a n d A u C = m i n ( A + B - A ,  1 ) = B .  �9 

Remark 1. Any fuzzy logic 50 is a Too-tribe of Klement (1982) [see 
also Butnariu and Klement (1991)]. Consequently, 5 ~ contains the 
pointwise least upper bound (greatest lower bound) of any sequence of 
elements of 50. Recall that a fuzzy logic need not be a quantum logic in the 
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sense of Varadarajan, as the least upper bound of the sequence of elements 
of 50 may be less than the join of these elements, i.e., than the Giles bold 
union of these elements. Finally note that the structure of a fuzzy logic is 
not distributive. 

3. F UZZY STATE 

A state m on a quantum logic L maps L into the unit interval so that 
r e ( l ) =  1 and m ( V a , ) = Z m ( a , )  for any sequence { a n } e L  of mutually 
orthogonal elements, i.e., an _1_ am whenever n r  The mutual ortho- 
gonality of {a,} is equivalent to the total orthogonality of the sequence 
{an}, which means that for any n, the element an is orthogonal to the join 
of the other elements V,~en am. The total orthogonality is crucial for 
defining a state on a quantum logic. On fuzzy logics, the equivalence of the 
mutual and the total orthogonality may fail. This is why the definition of 
a fuzzy state of a fuzzy logic should be based on the notion of the total 
orthogonality. 

Definition 2. A fuzzy state m on a fuzzy logic 50, m: 50 ~ [0, 1], is 
a mapping such that r e ( l ) =  1 and for any totally orthogonal sequence 
{An} of elements of 50 it is m(U A , ) = Z  re(An). 

Lemma 1. Let 50 be a fuzzy logic. A sequence {An} c 50 is totally 
orthogonal if and only if the algebraic sum ~2 A n is equal to the fuzzy 
union U An. 

Proof Let c o ~ .  If A , ( e ) ) = 0  for any n, then (U A , ) ( ~ o ) = 0 =  
ZA,(o)) .  Let A , ( co ) r  for some n. The elements An and Umr 
are orthogonal and hence Um~nAm=min(~m~nAm, 1)~<A~= 1 - A , .  
It follows that ~.m~nAm(~O)~l-A,(co), and hence ~mAm(O))~l. 
Consequently, (U Am)(~o) = Z Am(e)), what finishes the proof. �9 

Theorem 1. Let 50 be a fuzzy logic on fL Then m is a fuzzy state on 
Y if and only if there is a probability P on the a-algebra 5: of all crisp 
subsets of f~ contained in 5 ~ so that 

VA e 50: m ( A ) = f A d P  

where the right-hand side is a Lebesgue-Stieltjes integral. 

Proof It is obvious that the system 5: of all crisp subsets of 
contained in 50 is a classical a-algebra. Further, any element A contained 
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in ~ is a 5:-measurable function (Klement, 1982; Butnariu and Klement, 
1991). Any fuzzy state m on 5r is a T~-measure of Klement (1982), i.e., a 
nondecreasing left-continuous valuation satisfying the boundary conditions 
[it is evident and m(0) equals 0]. Now, the result can be found in Butnariu 
and Klement (1991). �9 

The foregoing theorem shows that any fuzzy state on a fuzzy logic is 
in fact a fuzzy probability measure introduced by Zadeh (1968). 

4. FUZZY OBSERVABLES AND THEIR MEAN VALUES 

Let A ~ be a fuzzy logic on ~. A fuzzy observable x of A ~ is defined in 
the usual way, i.e., x is a a-homomorphism from the system ~(R)  of 
all Borel subsets of the real line into ~ .  Hence a fuzzy observable 
x: A ~ ~ ~ (R)  fulfills: 

(~) x ( U ) = x ( E ) •  for any E ~ ( R ) .  
(B) x(U E~) = U x(E~) for any sequence {E~} of mutually exclusive 

subsets from ~(R).  

It is evident that x ( ~ ) = 0  and x ( R ) = l .  Further, if ~ = ~ - ( ~ )  is a 
generated fuzzy a-algebra (i.e., the system of all ~-measurable fuzzy sub- 
sets of •), then fuzzy observables of o6/' coincide with T~-fuzzy observables 
of Kolesfirovfi and Rie~an (1992, n.d.). 

Let m be a fuzzy state on A p and let x be a fuzzy observable of A ~ 
Then mx(E)--m(x(E)) , EE:~(R), defines a probability distribution on 
~(R)  (Rie6an, 1989). Now we are able to define a crisp mean value of x, 

(7) M ( x ) - ~ x d m = ~ R  tdm~(t) 

if the right-hand side Lebesgue-Stieltjes integral does exist. 
Recently Kolesfirovfi and Rie~an (1992, n.d.) showed that To~-fuzzy 

observables (i.e., fuzzy observables of a generated fuzzy a-algebra Y)  are 
in a one-to-one correspondence with random variables on (~, 5:) with 
values in the finite fuzzy real line (Klement, 1985). We have shown 
(Mesiar, n.d.-b) that the fuzzy real-valued random variables of Klement 
(1985) are isomorphic to the extended fuzzy observables of ~,~(~) (the 
a-homomorphisms from ~( l / )  into ~ ( ~ ) ,  where it is the extended real 
line). Let x be a fuzzy observable of a fuzzy logic LP. Since A ~ is contained 
in the generated fuzzy a-algebra ~ ( ~ ) ,  x is a T~-fuzzy observable of 
~ ( ~ ) ,  too. Consequently x corresponds to a finite fuzzy real-valued 
random variable X on (~, ~ ) ,  X: Q ~ Y(R).  This correspondence is done 
through: 

(6) x ( ] - ~ ,  t[)(co)=X(co)(t), ~o~f~, t s R .  



1148 Mesiar 

Recall that the system ~ ( R )  of all finite fuzzy reals consists of all distribu- 
tion functions on R, i.e., p e ~-(R) iff p: R--* [0, 1] is a nondecreasing left 
continuous mapping such that inf p ( t )=  0 and sup p ( t )=  1. 

Remark 2. Let 5 ~ = ~ ( 5  P) be a generated fuzzy o--algebra. Butnariu 
(1986) defined a simple fuzzy measurable function s = ~ a i A  i as a couple 
({Ai}, {ai}), where {Ai} ~ 50 is a finite fuzzy partition of (fL 6e), i.e., the 
algebraic sum ~ A i = l ,  and ai are real constants, s induces a 
a-homomorphism s+l: ~ ( R )  ~ 50 via: 

(~) s+I(E)=ZE(a~).AI ,  E e l ( R )  

where E(-) is the characteristic function of the Borel subset E. If all 
elements Ai are crisp subsets from 5 e, then s is a real simple function and 
s +1 is its inverse. For a general simple fuzzy measurable function s, s +1 
may be viewed as a simple fuzzy observable. Using the standard limit 
procedures, we arrive at the extended fuzzy observables (Mesiar, n.d.-b). 
Note that M(s + 1) = Z a~- m(A ~). 

Let m be a fuzzy state on a fuzzy logic 50 and let P be a probability 
measure generating m (i.e., P = m/Sg). Let x be a fuzzy observable of 50 
and let X be the corresponding fuzzy real-valued random variable: Klement 
(1985) defined a mean value of X with respect to P by the help of so-called 
quasi-inverses: 

(~) F M ( X ) = ~ n X d P =  [~nX [q] d P ]  [q] 

where the right-hand side (if it exists) is a fuzzy real number (possibly 
nonfinite). Recall that for a left-continuous nondecreasing mapping 
p: [a, b] --. [c, d], p(a) = c, where a, b, c, and d are some constants from 
the extended real line, its quasi-inverse p[q]: [C, d]  ~ [-a, b ]  is defined 
through pEq](c)=a and p[q](x)=sup{yE [a, b]; p ( y ) < x }  for x e  ]c, d]. 
It is easy to see that the operation [q]  is involutive, i.e., (p[q])[q]= p. For 
more details see Klement (1985) or Kolesfirovfi and Rie6an (1992, n.d.). 

Definition 3. Let x be a fuzzy observable of a fuzzy logic 50 ~ o~(5e). 
A fuzzy mean value FM(x)  of x with respect to a given fuzzy state m on 
50 (if it exists) is a fuzzy real number F M ( x ) = F M ( X ) ,  where X is the 
corresponding Klement random variable with values in finite fuzzy real line 
and FM(X) is its mean value with respect to P = m/Se. 

The following theorem shows the relationship between the crisp mean 
value and the fuzzy mean value of a fuzzy observable. 

Theorem 2. Let x be a fuzzy observable of a fuzzy logic 50 with finite 
fuzzy mean value FM(x)  with respect to a fuzzy state m. Then FM(x)  is 
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a probability distribution function on R and its mean value M(FM(x) )  (if 
it exists) equals the crisp mean value M(x). 

Proof Let p be a finite fuzzy real number, i.e., p is a probability 
distribution function on R. Then the mean value M(p), if it exists, is a 
Lebesgue-Stieltjes integral of the quasi-inverse pEU~ over the unit interval 
with respect to the Lebesgue measure, 

1 

M ( p ) =  fR t dp(t) = fo pEq](~)d~x 

Let FM(x)  be a finite fuzzy mean value of x. Let X be a fuzzy real-valued 
random variable corresponding to x. Then 

M(FM(x) )  = Io 

--fo 

(X((o)) rq~ (0r dP(co)] d~ 

(X((,o)) Eq~ (~) d~] dP(,o) 

On the other hand, the fuzzy state m induces a probability distribution rex, 

m x ( ] - ~ ,  r E ) = m ( x ( ] - ~ ,  t [ ) ) = I n  x ( ] - o %  t E)(cn) dP(o~ ) 

for any t 6 R. Using equation in condition (6), we get 

The result follows. [] 

Example. Let ~ =  [0, 1] and let ~ = ~ ( ~ ( E O ,  1])), i.e., the fuzzy 
logic 5 ~ is a generated fuzzy o--algebra of all Borel-measurable fuzzy subsets 
of ~.  Let m(A)=S~Ad2, A . ~ ,  where 2 is the Lebesgue measure. Let 
A ~ 5 ~ be a given element. Then s = A ( = 0 .  A 1 +  1. A) is a simple fuzzy 

902 '32 '7-6 
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measurable function (Butnariu, 1986) corresponding to an "indicator 
function" of A. Then for any E e  N(R) we have 

if 

({0, 1} 
,/{1} E {o, 

i.e., s +1 is an indicator of the fuzzy subset A introduced by Dvure&nskij 
and Rie~an (1991). Evidently M(s +1) =m(A). 

Let A(co)=co/2, e)E[0,1] ,  for example. Then m(s+l )= l /4 .  The 
corresponding fuzzy real-valued random variable X is defined as follows: 

i if t ~ 0 ,  
X(a))(t)= -co/2 if te  ]0, 1], 

if t > l ,  

~o~fl,  t ~ R  

We have 

x[q]((D)(5) : {01 if 5 ~ 1 - oJ/2, 
if 5 > 1 - o ) / 2 ,  ~o~{1, 5 ~ [ 0 , 1 ]  

Further, 

fl) (x[q]((D))(5) d~((D) : { 025 - 1 ifif ~ <~ 1 / 2 , 5  ~ 1/2, 5el0, 13 

The fuzzy mean value of the fuzzy observable s +1 is a finite fuzzy real 
number 

I i  if t<~0, 
FM(s+l)( t )=  l + t ) / 2  if t e ] 0 , 1 ] ,  

if t >  1, 

t ~ R  

It is easy to see that M(FM(s+I) )=S l t . (1 /2 )  d t =  1/4=M(s+l) .  �9 
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